Received: August 18, 1981

X-RAY DIFFRACTION OF NOMF₆ (M = U, Sb, Nb, Ta)^{*}

NOBUAKI SATO and AKIICHI KIGOSHI

Research Institute of Mineral Dressing and Metallurgy Tohoku University, 1-1-2 Katahira, Sendai 980 (Japan)

SUMMARY

Four nitrosyl fluorometallate salts ($NOUF_6$, $NOSbF_6$, NONbF₆, $NOTaF_6$) were synthesized by the reaction between N_2O_4 -HF mixtures and the metal. X-ray diffraction and density studies indicate that $NOUF_6$, $NOSbF_6$, $NONbF_6$ and $NOTaF_6$ are isostructural and have simple cubic unit cells containing one molecule.

INTRODUCTION

During the past twenty five years a number of papers have been published on nitrosyl fluorometallate salts[1], [2],[3].

* This paper is taken in part from the Dr. Eng. dissertation of N. Sato

0022-1139/82/0000-0000/\$02.75

The basic reactions by which these salts are synthesized can be exemplified by the interaction of nitrosyl fluoride with the respective metals, as shown in the following equation:

 $M + 6NOF = NOMF_6 + 5NO$ (M = U, Sb, Nb, Ta).

A reaction between N_2O_4 and liquid HF gave compounds such as NOF 3HF and NOF 6HF[4],[5],[6] which are potentially cheap sources of NOF and may permit their use on a large scale. Since N_2O_4 -HF solution is so reactive and available for processes which are impossible in other solutions, the application of this non-aqueous solution on an industrial scale may be economic. These concepts arose through the work at Brookhaven National Laboratory on the reprocessing of reactor fuels[7]. One of the present authors reported that many nitrosyl fluorometallate salts can be obtained easily using the N_2O_4 -HF mixtures[8],[9],[10],[11].

Recently we have extended this process to the investigation of separating and refining metallic components, such as Nb and Ta, from their sources[12],[13].

The X-ray diffraction pattern for each salt are useful in order to understand and follow the whole process. However, there is still not much known about the structures of these salts due to the extreme reactivity of the salts both as oxidizing and as fluorinating agents. These four nitrosyl fluorometallate salts NOMF₆ (M = U, Sb, Nb and Ta) have similar thermal properties that is, they sublime at relatively low temperatures after one or two phase transitions. Musil, et al reported that NOUF₆ had a simple cubic unit cell with lattice constant $a_o = 5.234$ Å[14]. However, Beal et al. suggested that NOSbF₆ is face-centered cubic $a_o = 10.19$ Å[15].

366

EXPERIMENTS, RESULTS AND DISCUSSION

Preparation of $NOMF_6$ (M = U, Sb, Nb, Ta)

For NOUF₆, the 20mole%NO₂-80mole%HF solution prepared as described previously[8] was added to metallic uranium in a reaction vessel made of Kel-F plastic. The reaction vessel was kept at room temperature for 1 or 2 days until all the metal had dissolved. A whitish-blue compound was obtained by centrifuging the solution. For NOSbF6, 20mole%NO2-80mole%HF solution was added slowly to the metallic antimony until all the metal had dissolved at room temperature and had been converted to a white precipitate. The same method was used to prepare $NONbF_6$ and NOTaF6, and white precipitates were obtained. These four products have been identified as NOMF6 by chemical and DTA-TG analyses. All the products were analyzed for metal ion, fluorine and nitrogen as previously described[8] and the results are shown in Table 1, From DTA-TG results, the phase transition temperature and sublimation point of each product coincided with those reported by Kigoshi, and it was clear that no compounds other than NOMF₆ were present.

X-ray powder photographs were obtained using a Teflon plate and Cu-K α irradiation through a nickel filter. NOMF₆ was put on the plate and packed in with a plastic cover in an inert atmosphere box.

X-ray diffraction studies

The X-ray diffraction pattern for each nitrosonium salt is given in Table 2. The X-ray diffraction pattern for $NOUF_6$ reported by Musil, et al. is also given and the two sets of data for $NOUF_6$ are in close agreement.

TABLE 1

Co	mponent (१)	NOUF ₆	NOSDF 6	NONDF 6	NOTaF ₆
м	Calcd	62.31	45.81	39.22	55.69
	Found	62.38	45.11	39.42	55.75
F	Calcd	29.84	42.89	48.12	35.08
	Found	29.56	42.99	48.20	35.07
N	Calcd	3.62	5.27	5.91	4.31
	Found	3.45	4.76	5.92	4.31

Chemical analyses of NOMF6.

The X-ray diffraction pattern for NOSbF₆ reported by Beal, et al. is also given in Table 2 and the two sets of data for NOSbF₆ agree in inter-planar spacing d and intensity I. However, Beal, et al. indexed the data with a face-centered cubic unit cell in which $a_o = 10.19$ Å but we consider it isostructural with NOUF₆ with a simple cubic unit cell $a_o = 5.087$ Å.

NONbF₆ and NOTaF₆ give cimilar X-ray diffraction patterns which we index with unit cells a_o = 5.105 and 5.110 Å respectively.

Densities and number of molecules per unit cell of NOMF6

The densities of $NOMF_6$ at room temperature were determined by volume displacement in Kel-F oil. A polypropylene picnometer was used. The results are given in Table 3.

ABLE 2							NONDF			_
NOUR	diffra	ction	patterns fo	r NOMFs			d _{obsd} (Å)	d _{calcd} (Å)	I	hkl
NOOF							5.048	5.105	100	100
							3.576	3.610	100	110
Cato an	d vie			Micil at	1		2,923	2.923	17	111
5410 All				<u> </u>	. <u></u> .		2,535	2.553	10	200
a (b	\ т	<u>አ</u> ৮1	a (b)		Ŧ	b k1	2.270	2.283	15	210
"obsd \"	., 1	IKI .	calcd (A)	dobsd (A)	1		2.075	2.084	53	211
5 173	100	100	5 234	5 17	80	100	1.799	1.805	22	220
3 669	80	110	3,701	3.66	100	110	1,697	1.702	20	$\binom{300}{221}$
2,996	45	111	3.022	3.00	25	111	1.610	1.514	18	310
2.604	31	200	2.617	2,601	13	200	1.535	1.539.	15	311
2.327	76	210	2.341	2.327	40	210	1,467	1.474	5	222
-,,							1.412	1.416	15	320
2,122	61	211	2,137	2.136	55	211	1.362	1.364	20	321
1,842	29	220	1.850	1.841	25	220	1.274	1.276	10	400
1,737	29	(221)	1.743	1.737	35	(221)	1.238	1.238	İ6	$\binom{410}{322}$
1,650	33	310	1,650	1,648	30	310	1 202	1 203	11	,411,
1.573	12	311	1.578	1,572	18	311	1,202	1 171	,	'330'
1,505	4	222	1.511	1.505	8	222	1.170	1.1/1	, ,	420
1.447	6	320	1,452	1.447	13	320	1.140	1.192		420
1.395	10	321	1,399	1.395	25	321	1.112	1.114	8	421
							NOTAF	<u>.</u>		
							d _{obsd} (Å)	d _{calcd} (Å)	I	hkl
NOSDF							5.073	5,110	82	100
							3.587	3,613	100	110
Sato and	Kigos	hi		Beal.et	al.		2.936	2.950	30	111
							2.541	2.555	12	200
d(Å)	I	hk1	a (Å)	a(Å)	1	hk1	2.274	2,285	31	210
-obsd			-calcd	pag			2.076	2,086	51	211
5.014	100	100	5.097	5.09	20	200	1.801	1,807	21	220
3.570	80	110	3.597	3,60	80	220	1,698	1,703	30	(300)
2.921	30	111	2,937	2.942	20	222	1,610	1.616	23	310
2.533	5	200	2,544	2.536	10	400	1,537	1.541	14	311
2 266										
2,200	20	210	2.275	2.272	50	420	1,471	1,475	5	222
2,200	20	210	2.275	2.272	50	420	1.471	1,475	5	222 320
2,200	20 60	210 211 220	2.275	2.272	50 100 70	420	1,471 1,414	1,475 1,417 1,365	5 13	222 320 321
2.071	20 60 5	210 211 220 ,300,	2.275 2.077 1.799	2.272 2.074 1.796	50 100 70	420 422 440	1,471 1,414 1,363 1,275	1,475 1,417 1,366 1,278	5 13 17	222 320 321 400
2.071 1.799 1.692	20 60 5 40	210 211 220 (³⁰⁰) 221)	2.275 2.077 1.799 1.696	2.272 2.074 1.796 1.693	50 100 70 80	420 422 440 600	1,471 1,414 1,363 1,275 1,237	1.475 1.417 1.366 1.278 1.239	5 13 17 3	222 320 321 400 (410)
2.071 1.799 1.692 1.607	20 60 5 40 32	210 211 220 (300 (221) 310	2.275 2.077 1.799 1.696 1.609	2.272 2.074 1.796 1.693 1.607	50 100 70 80 70	420 422 440 600 620	1.471 1.414 1.363 1.275 1.237	1.475 1.417 1.366 1.278 1.239	5 13 17 3 10	222 320 321 400 (⁴¹⁰) 322) .411
2.071 1.799 1.692 1.607 1.530	20 60 5 40 32 12	210 211 220 (300) 221) 310 311	2.275 2.077 1.799 1.696 1.609 1.534	2.272 2.074 1.796 1.693 1.607 1.533	50 100 70 80 70 60	420 422 440 600 620 622	1.471 1.414 1.363 1.275 1.237 1.203	1.475 1.417 1.366 1.278 1.239 1.204	5 13 17 3 10 6	222 320 321 400 (⁴¹⁰) 322 (⁴¹¹) 330
2.071 1.799 1.692 1.607 1.530 1.466	20 60 5 40 32 12 4	210 211 220 (221) 310 311 222	2.275 2.077 1.799 1.696 1.609 1.534 1.468	2.272 2.074 1.796 1.693 1.607 1.533 1.469	50 100 70 80 70 60 20	420 422 440 600 620 622 444	1.471 1.414 1.363 1.275 1.237 1.203 1.171	1.475 1.417 1.366 1.278 1.239 1.204 1.172	5 13 17 3 10 6 6	222 320 321 400 (322) (311) 330 331
2.071 1.799 1.692 1.607 1.530 1.466 1.410	20 60 5 40 32 12 4 32	210 211 220 (300) 221) 310 311 222 320	2.275 2.077 1.799 1.696 1.609 1.534 1.468 1.411	2.272 2.074 1.796 1.693 1.607 1.533 1.469 1.409	50 100 70 80 70 60 20 70	420 422 440 600 520 622 444 640	1.471 1.414 1.363 1.275 1.237 1.203 1.171 1.141	1,475 1,417 1,366 1,278 1,239 1,204 1,172 1,143	5 13 17 3 10 6 5	222 320 321 400 (⁴¹⁰) 322) (⁴¹¹) 330 331 420
2.001 2.071 1.799 1.692 1.607 1.530 1.466 1.410 1.358	20 60 5 40 32 12 4 32 4 32 4	210 211 220 (221) 310 311 222 320 321	2.275 2.077 1.799 1.696 1.609 1.534 1.468 1.411 1.360	2.272 2.074 1.796 1.693 1.607 1.533 1.469 1.409 1.362	50 100 70 80 70 60 20 70 90	420 422 440 600 622 444 640 642	1.471 1.414 1.363 1.275 1.237 1.203 1.171 1.141 1.113	1.475 1.417 1.366 1.278 1.239 1.204 1.172 1.143 1.115	5 13 17 3 10 6 6 5 5	222 320 321 400 (³ 22) (³ 12) 331 420 421

The number of molecules per unit cell were calculated anc are given in Table 3. The results show that the simple cubic unit cell contains one molecular unit.

TABLE 3

Densities and number of molecules per unit cell of NOMF_6 .

	NOUF ₆	NOSbF ₆	NONDF ₆	NOTaF ₆
м	382.025	265.696	236.909	324.944
a _o (Å)	5.234	5.087	5.105	5.110
ρ (g/cm³)	4.205	3.375	2.990	3.901
ΣΑ	363.167	267.608	239.606	313.529
ΣΑ/Μ	0.951	1.007	1.011	0.965

REFERENCES

- J.R. Geichman, L.R. Swaney and P.R. Ogle, GAT-T-971(1962).
 P.L. Robinson and G.J. Westland, J. Chem. Soc., 4481(1956).
 A.A. Woolf, J. Chem. Soc., 1053(1950).
- 4 F. Seel, G. Fuchs and D. Werner, Chem. Ber., 96(1963)173.
- 5 F.L. Horn, C.B. Bartlett and R.J. Tivers, US AEC Report BNL-6231(1962).

- 6 F. Seel, Angew. Chem., <u>77</u>(1965)689.
- 7 G. Strickland, F.L. Horn and R. Johnson, AIChE, Chem. Eng. Prog. Symposium Ser. Vol. 60 No.47(1964)62.
- 8 A. Kigoshi, Thermochim. Acta, 11(1975)35.
- 9 A. Kigoshi, Thermochim Acta, <u>12</u>(1975)179.
- 10 A. Kigoshi, Thermochim. Acta, 16(1976)355.
- 11 A. Kigoshi, Thermochim. Acta, 29(1979)147.
- 12 A. Kigoshi, K. Okada and M. Ohmi, Sci. Rep. Res. Inst. Tohoku Univ. A <u>24</u>(1973)97.
- 13 N. Sato and A. Kigoshi, AIChE Journal (in press).
- 14 F.J. Musil, P.R. Ogle and K.E. Beu, GAT-T-553(1953).
- 15 J.B. Beal, Jr., C. Pupp and W.E. White, Inorg Chem., 8(1969)828.